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Abstract
In a previous work (Bouferguene 2005 J. Phys. A: Math. Gen. 38 3923), we
have shown that in the framework of the Gaussian integral transform, multi-
centre integrals over Slater type functions can be evaluated to an acceptable
accuracy using a tailored Gauss quadrature in which the weight function has
the form W(σ, τ ; z) = zν exp(−σz − τ/z). To be considered a solution
worth implementing within a software for routine use in ab initio molecular
simulations, the method must also prove to be at least as efficient as those
methods previously published in the literature. Two major results are provided
in this paper. Firstly, an improvement of the procedure used to generate the
roots and weights of the Gauss–Bessel quadrature is proposed. Secondly, a
computational cost analysis of the present method and the SD̄ (Safouhi 2001
J. Phys. A: Math. Gen. 34 2801) based approach are compared, hence proving
the equivalence of the two from a complexity point of view.

PACS number: 02.30.Uu

1. Introduction

From the earliest days of quantum theory, it was established that except for a very few
systems, the Schrödinger equation cannot be fully and exactly solved. Consequently, it
became obvious that for practical modelling, one has to turn to approximate solutions of
the fundamental equation from which molecular properties could be extracted. On the road
map to modern quantum chemistry one finds Roothaan’s LCAO [1] method which enables
approximate wavefunctions to be written in terms of linear combinations of atomic orbitals.
Since it is practically impossible to construct exact analytical solutions of the Schrödinger
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equation, it proved very useful to know some of their properties since they could be used as
a guidance when constructing the approximate trial functions. In fact, it was theoretically
shown that such solutions must have a cusp at the origin [2] and an exponential decrease at
infinity [3]. Based on these properties, an appropriate family of functions that could be used
to represent atomic orbitals are the so-called Slater type functions (STFs) [4].

Unfortunately, although the choice of STFs as a basis set stands on a strong theoretical
ground, their use was limited in practice. In fact over the past decades, only few softwares using
STFs (allowing a full ab initio calculation at least at the SCF level) were made available to the
scientific community [5–8]. The reasons for this state of affairs are the difficulties occurring
during the computation of multi-centre integrals which are known to be the bottleneck in any
quantum chemistry software. Indeed, at the ab initio level, any molecule of practical interest
requires the evaluation of millions of such integrals in order to populate the Hamiltonian
matrix. As a consequence, the development of robust and cost-efficient algorithms handling
multi-centre integrals would constitute a tremendous progress in the direction of using STFs
in the field of quantum chemistry.

Despite the difficulties, several authors devoted some of their efforts to explore ways that
could be used to solve the problem of multi-centre integrals over STFs. These efforts have
led to the publication of a wide variety of mathematical results and numerical procedures
handling to some degree of efficiency the hard task of evaluating multi-centre integrals. Such
procedures were developed following one of the three major axes.

(i) Addition theorem. When the mathematical structure of the radial part of STFs is examined,
one finds that handling multi-centre integrals is difficult because the electronic and the
molecular geometry parameters cannot be easily separated. Such parameters appear as
the argument of a square root function, i.e.

√‖r − a‖. Consequently, addition theorem-
based methods usually operate by expanding the STFs as infinite series hence enabling
the electronic and the geometric parameters to be uncoupled [9]. The end result of
the methods in this category yields series representations of multi-centre integrals, the
summation of which usually requires specialized algorithm to enhance their convergence.

(ii) Integral transforms. Two such methods were proposed in the literature: the Gaussian
integral transform (GIT) [10, 11] and the Fourier integral transform (FIT) [12]. In the
framework of each of these methods, multi-centre integrals are transformed into equivalent
mathematical objects and are finally expressed as a multiple integral of the form,

I =
∫ 1

0
du f1(u)

∫ 1

0
dv f2(v) · · ·

∫ +∞

0
dzF(u, v, . . . , z)︸ ︷︷ ︸

S(u,v,...)

. (1)

In the case of the FIT, the integrand of the semi-infinite integral is oscillatory due to a
Bessel function of the first kind. As a consequence, an accurate evaluation of such an
entity can only be carried out using highly specialized algorithms. One such algorithm is
the so-called SD̄ which was originally proposed by Safouhi [13, 14] and was extensively
applied to the case of multi-centre integrals by Safouhi and co-workers [13–19]. As
for the integrand occurring in the semi-infinite integral in the GIT method, it does not
oscillate but exhibits a sharp peak making it a poorly behaving function, hence requiring
tailored procedures to ensure a reliable evaluation. In addition to the series representation
originally proposed by Shavitt and Karplus [10], we have proposed in a previous work
[20] a special Gauss quadrature, referred to as Gauss–Bessel, to carry out the evaluation
of S(u, v, . . .). The preliminary results showed that Gauss–Bessel is able to achieve an
accuracy comparable to that of other methods.
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(iii) Hybrid methods. In this category, we find those methods which for some integrals propose
new mathematical developments while for others, particularly the four-centre integrals,
use series expansions in terms of Gaussian type functions [7, 21]. This strategy, which in a
sense amounts to using a huge Gaussian basis set to represent a STF, offers the possibility
of taking advantage of existing GTF-based algorithms which over the past 40 years have
been extremely optimized.

Perhaps the major difficulty in setting up the Gauss–Bessel quadrature for the evaluation
of multi-centre integrals over STFs is the computation of the corresponding roots and weights.
Because such quantities are essential to the method under investigation, it is of paramount
importance to use an efficient procedure for their computation. Let us point out that such a
problem is, in a sense, common to all numerical techniques based on special Gauss quadratures.
For instance, in the context of ab initio calculations over GTFs, one of the methods that is
widely used to evaluate Boys functions is the so-called Gauss–Rys quadrature [22] whose
success depends on its efficient implementation as described by Lindh et al [23]. The present
work aims at investigating the advantage of determining the roots and weights required by
the Gauss–Bessel quadrature by means of an algorithm based on matrix diagonalization. The
complexity of the new procedure is compared to that of SD̄ which shows, based on theoretical
considerations, that the Gauss–Bessel approach is comparable to the SD̄ from a computational
cost perspective.

2. Definitions, properties and notation

A Slater type function centred on some arbitrary point, defined by its location vector a, is
generally defined as

χm
n,l(α, r − a) = Nn(α) ‖r − a‖n−l−1 exp(−α‖r − a‖)︸ ︷︷ ︸

Radial term

Ym
l (r − a), (2)

where Nn(α) = (2α)n+1/2/
√

(2n)! is the normalization constants and Ym
l (k) represents the

solid spherical harmonic of degree l and order m which is defined as

Ym
l (k) = ‖k‖lY m

l (θk, φk)

= im+|m|
√

2l + 1

4π

(l − |m|)!
(l + |m|)! ‖k‖lP

|m|
l (cos θk) eimϕk , (3)

where P m
l (z) stands for the associated Legendre function for which the Rodrigues

representation is given in [24, p 94]. To carry out multi-centre integrals, it is of importance to
note that solid spherical harmonics possess a very interesting addition theorem allowing the
electronic variable r and the geometry parameter a to be separated. According to Steinborn
and Ruedenberg [25], the solid spherical harmonic in equation (2) can be expanded as

Ym
l (r − a) = 4π(2l + 1)!!

l∑
l′=0

l′∑
m′=−l′

〈lm|l′m′|l − l′m − m′〉
(2l′ + 1)!![2(l − l′) + 1]!!

Ym′
l′ (r)Ym−m′

l−l′ (a), (4)

where (2l + 1)!! = (2l + 1)!/(2l l!) and 〈l1m1|l2m2|l3m3〉 denotes the so-called Gaunt
coefficients [26]. The above equation clearly shows that solid spherical harmonics do
not introduce any special difficulty when involved as part of multi-centre integrals. As a
consequence, the efficiency of any algorithm geared towards the evaluation of multi-centre
integrals over STFs depends on how fast it can handle the radial term as labelled in equation (2).
In fact, for analytical work, it is customary to derive the appropriate formulae for the simple
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case corresponding to 1s Slater orbital. Expressions for higher order orbitals are afterwards
obtained by simply differentiating the 1s result with respect to the screening constant using
the following property of STFs:

‖r − a‖n−l−1 exp(−α‖r − a‖) =
(

− ∂

∂α

)n−l−1

exp(−α‖r − a‖). (5)

In the framework of the GIT method, the starting point as proposed in [10] is to express the 1s
Slater orbital as the Laplace transform of a suitably chosen function, which happens to involve
a GTF

χ0
1,0(α, r − a) = N1(α)

∫ +∞

0
s−3/2 exp

(
−α2

4s

)
exp(−s‖r − a‖2)︸ ︷︷ ︸

GTF

ds. (6)

The motivation for introducing the above integral representation is the presence of a GTF
as part of its integrand. Indeed, when dealing with products of STFs as they occur in the
definition of multi-centre integrals, the GIT allows one to apply the well-known multiplication
theorem of GTFs hence simplifying the final expressions. In the original work of Shavitt
and Karplus [10], considered as the pillar of the GIT method, the authors have provided a
detailed roadmap of equations allowing to simplify the algebra hence easing the development
of numerical procedures. In the following section, some aspects of multi-centre integrals
treated within the FIT approach will be considered. It hence seems appropriate to define the
most relevant mathematical objects that will be needed later. Perhaps the most important of
such objects is the so-called B functions which in spite of their complicated analytical form,
were shown to have the simplest Fourier transform [27]. This very property makes the B
functions the ideal basis set to be used in the context of the FIT method. According to Filter
and Steinborn the B functions are defined as [28]

Bm
n,l(α, ‖r − a‖) = 1

2n+l (n + l)!
k̂n−1/2(α‖r − a‖)Ym

l [α(r − a)], (7)

where the reduced Bessel function k̂n−1/2(z) are defined as

k̂n−1/2(z) =
n∑

p=1

(2n − p − 1)!

(p − 1)!(n − p)!
2p−n zp−1 exp(−z)︸ ︷︷ ︸

Un-normalized STF

. (8)

Despite their complicated form in the coordinate space, B functions were selected because
of the simplicity of their Fourier integral transform as compared to any other exponentially
decreasing function

B̄m
n,l(α, p) = 1

(2π)3/2

∫
r

e−ip·rBm
n,l(α, r) dr

=
√

2

π
α2n+l−1 (−i‖p‖)l

(α2 + ‖p‖2)n+l+1
Ym

l (θp, φp). (9)

As a last remark, it is of interest to mention that, as can be seen from equation (8), B functions
can easily be expressed in terms of STFs. The inverse is also true as was shown by Weniger
and Steinborn in [27 (equation (3.22))].

3. Evaluation of multi-centre integrals using the Gauss–Bessel quadrature

In the following, we describe an approach that can be used for setting up a procedure for
the evaluation of multi-centre integrals in the framework of the GIT method (based on the
Gauss–Bessel quadrature). It will be shown later that from a computational cost point of view,
the new procedure is comparable to the algorithms developed for the FIT approach. To do
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so, we start by pointing out the structural similarities between the expressions of multi-centre
integrals as obtained within the FIT and the GIT approaches.

3.1. Structure of multi-centre integrals in the FIT and GIT methods

Previously we have hinted that the expressions of multi-centre integrals obtained within the
FIT and the GIT frameworks were structurally similar. Indeed, in both methods multi-centre
integrals always end up being represented by a multiple integral the innermost of which is
semi-infinite. To be more specific, let us explore the case of the three-centre nuclear attraction
integral which for the sake of simplicity will only involve s type STFs

T n2,0,0
n1,0,0 = 〈

χ0
n1,0(α1, r − a)

∣∣ 1

‖r − c‖
∣∣χ0

n2,0(α2, r − b)
〉
. (10)

Note, that within the FIT approach, one should use s type B functions since these are the
ones leading to the simplest analytical forms. Thus, the expression of the three-centre nuclear
attraction integral of interest as derived in the context of the GIT formulation can be written
as [20]

Gn2,0,0
n1,0,0(α1, α2, a, b, c) = Nn1(α1)Nn2(α2)2

−(n1+n2−1)

∫ 1

u=0
du u−(n1+1)/2(1 − u)−(n2+1)/2

×
∫ +∞

0
z(n1+n2−2)/2Hn1

[
α1p

2

√
z√
u

]
Hn2

[
α2p

2

√
z√

1 − u

]

×F0

(
1

z

)
exp

(
−σ

z
− τz

)
dz, (11)

where

p = ‖ua + (1 − u)b − c‖, σ = u(1 − u)
‖a‖2

p2
and τ = p2

4

(
α2

1

u
+

α2
2

1 − u

)
.

(12)

Hn(z) represents the Hermite polynomial of degree n [29, p 250] while F0(z) is the Boys
function defined as

Fm(z) =
∫ 1

0
t2m exp(−zt2) dt. (13)

In the FIT approach, the expression of the three-centre nuclear attraction integrals obtained
with s type B functions [30] is defined as

Fn2,0,0
n1,0,0 (α1, α2, a, b, c) =

√
2

π

α
2n1−1
1 α

2n2−1
2

πn1!n2!2n1+n2
bn1+n2+1/2

×
∫ 1

0
du un2(1 − u)n1

∫ +∞

0

Kn1+n2+1/2[bβ(u, k)]

[β(u, k)]n1+n2+1/2 j0(‖v‖k) dk, (14)

where

v = u(a − b) + (b − c) and [β(u, k)]2 = (1 − u)α2
1 + uα2

2 + u(1 − u)k2. (15)

The term j0(z) stands for the spherical Bessel function which can be written in a simpler form
as sin(z)/z.

From equations (11) and (14) one can clearly note the structural similarity in the
expressions of the three-centre nuclear attraction integrals as obtained within the GIT and
the FIT methods. Indeed, in both cases the definition of the three-centre nuclear attraction
integral of interest is expressed in term of a double integral with the same boundaries. In
addition, the outermost integral involves the same terms, u and (1−u) albeit the exponents are
totally different. However, in both cases it is possible to use a similar numerical integration
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technique, namely shifted Gauss–Jacobi, because of the presence of a weight function of
the form ua(1 − u)b. Previous work due to Homeier and Steinborn [31] showed that a
Gauss–Möbius quadrature leads to better results for the integration over [0, 1]. Regarding the
semi-infinite integral, perhaps the major difference is due to the oscillating term, j0(z), in the
FIT. It is the above-mentioned similarity that sets the ground for the present study, since it
seemed reasonable to believe that Gauss–Bessel quadrature can possibly be improved to be
as efficient as those methods elaborated in the context of FIT, in particular, the SD̄ method
which uses the nonlinear transformations D̄ originally proposed by Sidi [32, 33].

3.2. The Gauss–Bessel quadrature

Generally, when the structure of multi-centre integrals over STFs in the GIT approach is
examined, one finds that the semi-infinite integral (innermost integral) involves a function of
the form W(σ, τ ; z) = zν exp(−σ/z−τz) in which σ and τ are defined in terms of u, v, . . . , the
geometrical parameters and the screening constants. In a previous work [20], our investigation
of the three-centre nuclear attraction integral, which for s Slater orbitals is given by (11), led us
to identify W(σ, τ ; z) = √

z exp(−σ/z − τz) as an admissible weight function to be used for
the so-called Gauss–Bessel quadrature. The numerical setup of the new technique was carried
out as a two-step process. First, a set of polynomials, pr(x)r=0,1,2,..., orthogonal with respect to
W(σ, τ ; z), was constructed by means of the Gram–Schmidt orthogonalization scheme which
uses the following property of the moments:∫ +∞

0
zn

[
z1/2 exp

(
−σ

z
− τz

)]
dz = 2

√(σ

τ

)n+3/2
Kn+3/2(2

√
στ). (16)

Once the orthogonal polynomials are generated, their roots are computed by means of an
appropriate numerical method, e.g. Newton–Raphson [34]. The second step consists in
computing the weights of the quadrature using the relationship,

wj = 〈pn−1|pn−1〉
pn−1(xj )p

′
n(xj )

, (17)

where xj denotes the j th root of the orthogonal polynomial pn(x). From an efficiency
perspective the above-described procedure is not optimal for a routine evaluation of multi-
centre integrals. Luckily, it turns out that the computation of the roots and weights of the
Gauss–Bessel quadrature can substantially be improved by using a more efficient approach
due to Boley and Golub [35] and Gautschi [36]. Indeed, given a weight function w(z),
the orthogonal polynomials (with respect to w(z)) are connected by a three-term recurrence
relation of the form,

pk+1(z) = (z − αk)pk(z) − βkpk−1(z), k = 0, 1, 2, . . .

p0(z) = 1, and p−1(z) = 0,
(18)

where β0 is customarily defined as β0 = ∫ b

a
w(z) dz. For the purpose of this work, we provide

the definition of the coefficients αk and βk for k � 1 in the next section. The nth order Jacobi
matrix for the weight function w(z) is a tridiagonal symmetric matrix defined by

Jn(W) =




α0
√

β1 0√
β1 α2

√
β2

√
β2

. . .

. . .
. . .

√
βn−1

0
√

βn−1 αn−1




. (19)
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The nodes of the polynomials {pk}1�k�n (orthogonal with respect to the weight w(z)) are the
eigenvalues of Jn(W) while the weights wk are expressible in terms of the first component
vk,1 of the corresponding normalized eigenvectors,

wk = β0v
2
k,1, k = 1, 2, . . . , n. (20)

As can be seen, the construction of a Gauss quadrature in practice amounts to solving an
eigenvalue problem involving a symmetric tridiagonal matrix. Fortunately, the diagonalization
of such matrices is a routine problem in numerical analysis for which very efficient algorithms
are already available in the literature. The implementation of such algorithms can be found
in a wide variety of highly optimized commercial numerical libraries. For the purpose of
this work, a version of the QR algorithm found in [34] was used. Note that Gautschi has
already published a set of general purpose routines that could be used for generating the
roots and weights of an arbitrary Gauss quadrature, given the appropriate input [37, 38].
However, it was found that using the specifics of the problem in hand, namely the appropriate
recurrence relations and storing frequently used values, leads to a much more efficient
procedure.

3.3. Numerical analysis

Now, that we have an efficient procedure that could be used for the computation of the roots
and weights of the Gauss–Bessel quadrature, it is of interest to address its complexity so
as to have a feel of its computational cost. Perhaps the most obvious shortcoming in the
present form of the Gauss–Bessel approach is the necessity to generate the coefficients αk

and βk occurring in the three-term relationship (18), since these are used to populate the
Jacobi matrix (19). Assuming that the kth orthogonal polynomial can generally be written as
pk(z) = ∑k

p=0 ak,pzk , we can easily derive the working formula for αk ,

αk =
√

σ/τ


 2k∑

p=0

Sk,pKp+5/2[2
√

στ ]


/

 2k∑
p=0

Sk,pKp+3/2[2
√

στ ]


 (21)

and βk ,

βk =

 2k∑

p=0

Sk,pKp+3/2[2
√

στ ]


/

2(k−1)∑
p=0

Sk−1,pKp+3/2[2
√

στ ]


 , (22)

where the term Sk,p occurring above is defined as

Sk,p =

 min(k,p)∑

q=max(0,p−k)

ak,pak,p−q


√(σ

τ

)p

. (23)

According to the definition of the Jacobi matrix (19), it can easily be seen that an nth
order quadrature requires the computation of the coefficients {(αk, βk)}0�k�n−1 which, in turn,
need the values of the modified Bessel functions {Kp+1/2[2

√
στ ]}1�p�2n+2. Figure 1 shows

the organigram underlying the current implementation of the Gauss–Bessel quadrature. When
equations (21), (22) and the organigram (1) are put together, it is clear that the major overhead
in using the Gauss–Bessel approach lies in the generation of the orthogonal polynomials. In
this respect, it is advisable to generate beforehand the numerical values Kp+1/2[2

√
στ ] and√

(σ/τ)p for 0 � p � 2n + 2.
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��

�

0 =
√

/ K5/2[2
√

]/K3/2[2
√

]

0 = 0
Previous-denominator = 1

k = 0, 1, 2, . . . , n 1

pk+1(z) = (z k) pk(z) k pk 1(z)

Numerator = (zpk , pk) (cf equation (21))

Denominator = (pk, pk) (cf equation (21))

k (cf equation (21))

k (cf equation (22))

Previous-denominator = Denominator

−

− −−

β

β

β

τ τ τσ σ σα

α

α

Diagonalize Jacobi matrix (cf equation (19))

Figure 1. Organigram showing the current implementation of the Gauss–Bessel nodes and weights
generation.

3.4. Complexity analysis

In the previous work, it was shown that when the FIT approach is used to evaluate multi-centre
integrals, the most appropriate method to handle the semi-infinite integral as it occurs for
instance in (14) is to use the so-called SD̄ nonlinear transformation,

SD̄(2,j)
n =

∑n+1
i=0

(
n+1
i

)
(1 + i + j)nF (xi+j )

/[
x2

i+jG(xi+j )
]

∑n+1
i=0

(
n+1
i

)
(1 + i + j)n

/[
x2

i+jG(xi+j )
] , (24)

where {xl = (l + 1)π}l=0,1,2,..., j = 0, 1, 2, . . . and F(x) = ∫ t

0 G(t) sin(t) dt . In the special
case of the three-centre nuclear attraction integral given by (14), the function G(x) is defined
as

G(x) = 1

‖v‖x
Kn1+n2+1/2[bβ(u, x)]

[β(u, x)]n1+n2+1/2 . (25)

According to [16], the finite integral F(xi+j ) is evaluated as

F(xi+j ) = F [(i + j + 1)π ] =
∫ (i+j+1)π

0
G(x) sin(x) dx =

i+j∑
k=0

∫ (k+1)π

kπ

G(x) sin(x) dx. (26)

For each integral occurring within the above summation sign, a Gauss–Legendre quadrature
is used.

In order to fairly compare the computational cost associated with the SD̄ and the Gauss–
Bessel approaches, we use the absolute metric which amounts to counting the number of
operations required for the evaluation of the semi-infinite integral. Although more tedious to
carry out, the complexity analysis of the algorithms provides a true indication of the cost for
both methods as opposed to simply relying on the timings which obviously depend on the
hardware, software (compilers and operating systems), and the programmer’s skills.



A complexity analysis of the Gauss–Bessel quadrature 507

Table 1. Number of operations for the Gauss–Bessel approach.

Term Number of operations Total

Numerator (αk)
∑k

p=0

([∑p

q=0 1
]

+ 2
)

+
∑2k

p=k+1

([∑k
q=p−k 1

]
+ 2

)
k2 + 6k + 3

Denominator (αk)
a ∑2k

p=0 1 2k + 1

αk (k2 + 6k + 3) + (2k + 1) + 1
βb

k 1

Total for an nth order quadrature
∑n

k=1[(k2 + 6k + 3) + (2k + 1) + 2] (1/3)n(n2 + 9n + 26)

a The evaluation of the denominator requires only one operation since the product Sk,p = [∑
q aqap−q ]

√
(σ/τ)

p

was computed for the numerator.
b The value of βk needs only one division since the numerator was counted for in the computation of αk and the
denominator is saved from the previous iteration.

Before going into the details of complexity analysis, we assume that in both SD̄ and
Gauss–Bessel-based algorithms, the most costly operations are the multiplications, divisions
and the evaluation of transcendental functions. Thus, starting with the Gauss–Bessel
quadrature, we assume the following.

(i) Inspection of equations (21) and (22) shows that for each k > 1, computing the numerator
and denominator occurring in the definition of αk suffice since it can also be used to
generate βk , cf figure 1 and table 1.

(ii) The modified Bessel functions Kp+1/2(2
√

στ) and the terms
√

(σ/τ)p are tabulated
beforehand which makes the corresponding computational time negligible.

(iii) The diagonalization of the Jacobi matrix is a one time operation, carried out at the
end of the process, cf organigram (1). This provides a justification for neglecting the
corresponding time especially since the order n of the matrix Jn(W) is rather small. This
proved to be a fair assumption by comparing a large number of numerical experiments.

(iv) The time associated with an addition is negligible.

Using the above-enumerated hypotheses, we can calculate the number of elementary operations
required to calculate the semi-infinite integral in (11). Table 1 provides a summary of the
number of operations required to generate the coefficients αk and βk for an nth order quadrature,

NGB = n(n2 + 9n + 26)

3
. (27)

Regarding the SD̄ approach, inspection of equation (24) clearly shows that since the upper
bound of the summation over i does not exceed 10 (in general), the inventory of the elementary
operations for SD̄ was restricted to those involved in computation of F(xi+j ). In addition, to
minimize the number of operations, the value of F(xi+j ) is obtained from F(xi+j−1) (calculated

at the previous iteration) by adding a term of the form
∫ (i+j+1)π

(i+j)π
G(t) sin(t) dt . Starting at i = 0,

one needs to evaluate F(xj ) which according to [16] is computed as

F(xj ) =
j∑

m=0

∫ (m+1)π

mπ

G(t) sin(t) dt. (28)

As a consequence, in the framework of the SD̄ approach, one needs to use the Gauss–Legendre
quadrature (j + 1) + (n + 1) times. In this case, the calculation of the number of elementary
operations is carried out under the following assumptions.

(i) The values of 1/(‖v‖ti) and sin(ti), in which ti stands for the ith node of the chosen
Gauss–Legendre, are computed beforehand and stored for later use in appropriate arrays.
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Table 2. Number of elementary operations, i.e. multiplications, divisions and transcendental
functions evaluation, in the SD̄ approach.

Term Number of operations

1/‖v‖ti and sin(ti ) Computed beforehand

β(u, ti ) =
√

a + bt2
i 3

bβ(u, ti ) 3 + 1 = 4
Kn1+n2+1/2[bβ(u, ti )] 4 + 3(n1 + n2) + 3
β(u, ti )

n1+n2+1/2 1

G(ti ) = 1/(‖v‖ti )Kn1+n2+1/2[bβ(u, ti )]/ 1 + 4 + 3(n1 + n2) + 3 + 1+
[β(u, ti )]n1+n2+1/2 sin(ti ) 1 = 10 + 3(n1 + n2)

(ii) The Bessel function Kn1+n2+1/2 are computed using the three-term relationship,

K(n+1/2)+1(z) = 2n + 1

z
Kn+1/2(z) + K(n+1/2)−1(z) with

K−1/2(z) = K1/2(z) =
√

π

2z
exp(−z). (29)

Thus, Kn1+n2+1/2(z) requires 3(n1 +n2)+ 3 operations in which the second ‘3’ comes from
the evaluation of K1/2(z).

The last row in table 2 summarizes the number of elementary operations required to evaluate
the integrand in (14) for a given root ti of the Gauss–Legendre quadrature selected for the
evaluation of F(xi+j ). Keeping in mind that SD̄ requires the application of the Gauss–
Legendre quadrature (j + 1) + (n + 1) times, we can finally write the number of operations
associated with this task as

NSD̄ = [(j + 1) + (n + 1)]NLeg[3(n1 + n2) + 10], (30)

where NLeg represents the order of the Gauss–Legendre quadrature used to evaluate the partial
integral in equation (28). From the numerical discussion in [16], it can be seen that SD̄(2,0)

n

was used to evaluate the semi-infinite integral occurring in the case of three-centre integrals.
From the values listed in tables 1 and 5 of [16], one can note that on average n = 5 and since
the authors have selected NLeg = 20 we obtain

NSD̄ = [(0 + 1) + (5 + 1)]20[3(n1 + n2) + 10] = 1400 + 420(n1 + n2). (31)

Since the complexity of the SD̄ approach depends on the quantum numbers n1 and n2, it seems
fair to consider the average number of operations required for the computation of the integrals
in which n1 and n2 vary from 1 to 3 (1s to 3s orbitals). In such a case, we have

Average number of operations = 1400 + 420

[
1

9

3∑
n1=1

3∑
n2=1

(n1 + n2)

]

= 3080. (32)

Regarding the Gauss–Bessel approach, the complexity depends mainly on the order of the
quadrature as given in (27). Previously [20] it was found that a quadrature of order 12
was able to produce sufficiently accurate values in the case of three-centre nuclear attraction
integrals involving s type orbitals. In such a case the computation of the semi-infinite integral
requires 1112 elementary operations. Of course, we expect that for a different type of
integrals, higher order polynomials might be needed to properly approximate the integrand
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Table 3. Comparison of the number of elementary operations required by the SD̄ and the Gauss–
Bessel methods.

n1 + n2 SD̄ n Gauss–Bessel

2 2240 12 1112
3 2660 14 1624
4 3080 16 2272
5 3500 18 3072
6 3920 20 4040

of the corresponding semi-infinite integral which in other words means a larger number of
operations. Nevertheless, in the case of three-centre nuclear attraction integrals, we can clearly
see that the computation of the semi-infinite integral as it occurs in the FIT and the GIT methods
using the Gauss–Bessel quadrature and the SD̄ transformations requires a similar number of
operations. Indeed, comparing the values in table 3 shows that the SD̄ requires on average
3080 elementary operations corresponding to n1 + n2 = 4. This, of course, is comparable to
the number of operations required by a Gauss–Bessel quadrature of order 18 (3072 operations).
As a last note, it should be emphasized that even though the number of operations in the
Gauss–Bessel approach grows as O(n3), a low order quadrature will generally be sufficient to
achieve acceptable accuracy and this will make the two methods, i.e. Gauss–Bessel and SD̄,
comparable from a computational cost perspective.

4. Conclusion

In the original paper devoted to the description of the Gauss–Bessel quadrature for the
evaluation of multi-centre integrals in the context of GIT, emphasis was essentially put on
how accurate the new method is. Of course, in order to be a viable technique in practice,
the method must be at least as efficient as those already available in the literature. As a
consequence, we have presented above the tools that can possibly allow one to develop an
efficient algorithm based on the Gauss–Bessel quadrature for the evaluation of multi-centre
integrals. In addition to the efficiency provided by the use of Jacobi tridiagonal matrix, one
must not forget the possibility of speeding up the computations by appropriately storing typical
quantities, such as the roots and weights for typical values of the parameters σ and τ .
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